Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## Chun-Lan Yuan

Department of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721007, People's Republic of China

Correspondence e-mail:
chunlanyuan@126.com

## Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.010 \AA$
Disorder in solvent or counterion
$R$ factor $=0.082$
$w R$ factor $=0.238$
Data-to-parameter ratio $=18.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
## Bis\{4-chloro-2-[2-(isopropylamino)ethyliminomethyl]phenolato\}cobalt(III) perchlorate

The title compound, $\left[\mathrm{Co}\left(\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{ClN}_{2} \mathrm{O}\right)_{2}\right] \mathrm{ClO}_{4}$, possesses two independent complex cations and two perchlorate anions in the asymmetric unit. Both $\mathrm{Co}^{\mathrm{III}}$ atoms are six-coordinated by four N and two O atoms from two Schiff bases in slightly distorted octahedral coordination environments.

## Comment

Schiff base complexes are very important in coordination chemistry because of their easy preparation, interesting structures and excellent properties (Chang et al., 1998; Chaturvedi, 1977; Archer \& Wang, 1990; Costamagna et al., 1992; Bhatia et al., 1981). Recently, the author has reported a few Schiff base compounds containing perchlorate anions (Yuan, 2005a,b). As a continuation of this work, a new cobalt(III) complex, (I), is reported here.

(I)

Compound (I) is a perchlorate salt of discrete mononuclear cobalt(III) complex cations (Fig. 1). The structure is similar to that recently reported for a cobalt(III) complex containing the 2,4-dichloro-6-[3-(cyclohexylamino)propyliminomethyl]phenolate ligand (Yuan, 2005a). There are two independent complex cations in the asymmetric unit along with two perchlorate anions. Both $\mathrm{Co}^{\mathrm{III}}$ atoms are in a slightly distorted octahedral geometry formed by two O and four N atoms from two Schiff bases. The corresponding bond lengths and angles involving the Co atoms in the two cations are comparable to each other (Table 1) and to those of the above-mentioned related complex.

In the crystal structure, the cations are linked to the perchlorate anions via intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2), forming chains running along the $b$ axis (Fig. 2). In addition, $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions are observed.

## Experimental

5-Chlorosalicylaldehyde ( $0.1 \mathrm{mmol}, 15.6 \mathrm{mg}$ ), $N$-isopropylethane-1,2diamine $(0.1 \mathrm{mmol}, 10.2 \mathrm{mg})$, and $\mathrm{Co}\left(\mathrm{ClO}_{4}\right)_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{mmol}$, 48.3 mg ) were dissolved in $\mathrm{MeOH}(20 \mathrm{ml})$. The mixture was stirred at room temperature for 20 min to give a dark-brown solution. The
solution was left to stand in air for 12 d . Red plate-shaped crystals formed at the bottom of the vessel on slow evaporation of the solvent.

## Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{ClN}_{2} \mathrm{O}\right)_{2}\right] \mathrm{ClO}_{4}$

## $Z=8$

$D_{x}=1.489 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $P 2_{1} / c$
$a=11.362$ (1) A
$b=16.951$ (2) A
$c=29.566$ (3) $\AA$
$\beta=91.812$ (2) ${ }^{\circ}$
$V=5691.5(10) \AA^{3}$

## Data collection

Bruker SMART CCD area-detector diffractometer
$\omega$ scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

$$
T_{\min }=0.768, T_{\max }=0.929
$$

## Refinement

Refinement on $F^{2}$
$w R\left(F^{2}\right)=0.238$
$S=1.03$
12990 reflections
703 parameters
H-atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.101 P)^{2}\right. \\
& \quad+3.5387 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.91 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.72 \mathrm{e}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation
$\mu=0.93 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Plate, red
$0.30 \times 0.18 \times 0.08 \mathrm{~mm}$

48467 measured reflections 12990 independent reflections 6337 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.090$
$\theta_{\text {max }}=27.5^{\circ}$

Table 1
Selected geometric parameters ( $\left(\AA^{\circ}{ }^{\circ}\right.$ ).

| Co1-O1 | $1.891(4)$ | $\mathrm{Co} 2-\mathrm{O} 3$ | $1.887(4)$ |
| :--- | :---: | :--- | ---: |
| $\mathrm{Co} 1-\mathrm{O} 2$ | $1.884(4)$ | $\mathrm{Co} 2-\mathrm{O} 4$ | $1.886(4)$ |
| Co1-N1 | $1.903(5)$ | $\mathrm{Co} 2-\mathrm{N} 5$ | $1.905(5)$ |
| Co1-N2 | $2.041(5)$ | $\mathrm{Co} 2-\mathrm{N} 6$ | $2.016(5)$ |
| $\mathrm{Co} 1-\mathrm{N} 3$ | $1.907(5)$ | $\mathrm{Co} 2-\mathrm{N} 7$ | $1.933(6)$ |
| $\mathrm{Co} 1-\mathrm{N} 4$ | $2.012(5)$ | $\mathrm{Co} 2-\mathrm{N} 8$ | $1.988(6)$ |
|  |  |  |  |
| $\mathrm{O} 2-\mathrm{Co} 1-\mathrm{O} 1$ | $91.53(18)$ | $\mathrm{O} 4-\mathrm{Co} 2-\mathrm{O} 3$ | $90.54(19)$ |
| $\mathrm{O} 2-\mathrm{Co} 1-\mathrm{N} 1$ | $83.61(19)$ | $\mathrm{O} 4-\mathrm{Co} 2-\mathrm{N} 5$ | $83.9(2)$ |
| $\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 1$ | $93.19(18)$ | $\mathrm{O} 3-\mathrm{Co} 2-\mathrm{N} 5$ | $94.23(18)$ |
| $\mathrm{O} 2-\mathrm{Co} 1-\mathrm{N} 3$ | $93.4(2)$ | $\mathrm{O} 4-\mathrm{Co} 2-\mathrm{N} 7$ | $92.5(2)$ |
| $\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 3$ | $85.11(19)$ | $\mathrm{O} 3-\mathrm{Co} 2-\mathrm{N} 7$ | $86.55(19)$ |
| $\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 3$ | $176.5(2)$ | $\mathrm{N} 5-\mathrm{Co} 2-\mathrm{N} 7$ | $176.3(2)$ |
| $\mathrm{O} 2-\mathrm{Co} 1-\mathrm{N} 4$ | $175.9(2)$ | $\mathrm{O} 4-\mathrm{Co} 2-\mathrm{N} 8$ | $173.7(2)$ |
| $\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 4$ | $84.67(19)$ | $\mathrm{O} 3-\mathrm{Co} 2-\mathrm{N} 8$ | $84.9(2)$ |
| $\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 4$ | $98.0(2)$ | $\mathrm{N} 5-\mathrm{Co} 2-\mathrm{N} 8$ | $100.8(2)$ |
| $\mathrm{N} 3-\mathrm{Co} 1-\mathrm{N} 4$ | $84.9(2)$ | $\mathrm{N} 7-\mathrm{Co} 2-\mathrm{N} 8$ | $82.9(3)$ |
| $\mathrm{O} 2-\mathrm{Co} 1-\mathrm{N} 2$ | $88.23(19)$ | $\mathrm{O} 4-\mathrm{Co} 2-\mathrm{N} 6$ | $91.6(2)$ |
| $\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 2$ | $178.57(18)$ | $\mathrm{O} 3-\mathrm{Co} 2-\mathrm{N} 6$ | $177.0(2)$ |
| $\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 2$ | $85.38(19)$ | $\mathrm{N} 5-\mathrm{Co} 2-\mathrm{N} 6$ | $83.9(2)$ |
| N3-Co1-N2 | $96.3(2)$ | $\mathrm{N} 7-\mathrm{Co} 2-\mathrm{N} 6$ | $95.5(2)$ |
| $\mathrm{N} 4-\mathrm{Co} 1-\mathrm{N} 2$ | $95.6(2)$ | $\mathrm{N} 8-\mathrm{Co} 2-\mathrm{N} 6$ | $93.1(2)$ |

Table 2
Hydrogen-bond geometry ( $\left({ }^{\circ},{ }^{\circ}\right)$.

| $D-\mathrm{H} \cdots A$ | D-H | H $\cdots$ A | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 11^{\mathrm{i}}$ | 0.91 | 2.27 | 3.130 (9) | 157 |
| $\mathrm{N} 4-\mathrm{H} 4 A \cdots \mathrm{O} 9^{\text {'ii }}$ | 0.91 | 2.57 | 3.464 (16) | 168 |
| N6-H6A $\cdots$ O $7^{\text {iii }}$ | 0.91 | 2.43 | 3.253 (8) | 151 |
| $\mathrm{C} 8-\mathrm{H} 8 A \cdots \mathrm{O} 9^{\text {i }}$ | 0.97 | 2.53 | 3.359 (14) | 143 |
| $\mathrm{C} 21-\mathrm{H} 21 A \cdots \mathrm{Cl}^{\text {iv }}$ | 0.97 | 2.83 | 3.768 (7) | 163 |

[^1]

Figure 1
The structure of one of the independent cations of (I), showing the atomnumbering scheme. Displacement ellipsoids are drawn at the $30 \%$ probability level and $H$ atoms are not shown. The second cation has essentially the same appearance.


Figure 2
The crystal packing of (I), viewed along the $a$ axis. Dashed lines indicate hydrogen bonds. Both disorder components are shown.

H atoms were placed in idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.93-0.98, \mathrm{~N}-\mathrm{H}=0.91 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2$ or $1.5 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$. Atom O 9 of one perchlorate anion is disordered over two distinct sites with occupancies of 0.585 (16) and 0.415 (16). The $\mathrm{Cl}-\mathrm{O}$ and $\mathrm{O} \cdots \mathrm{O}$ distances in the disordered components were restrained to be equal. The $U^{i j}$ components of atoms $\mathrm{O} 6, \mathrm{O} 7, \mathrm{O} 9, \mathrm{O} 11, \mathrm{O} 12$ and $\mathrm{O}^{\prime}{ }^{\prime}$ were restrained to approximately isotropic behaviour.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

## metal-organic papers

SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

The author is grateful for financial support from the Natural Science Foundation (grant No. 2002B22) of Shaanxi Province and the main project (No. 04JS37) of the Key Laboratory of Shaanxi Province, People's Republic of China.

## References

Archer, R. D. \& Wang, B. (1990). Inorg. Chem. 29, 39-43.

Bhatia, S. C., Bindlish, J. M., Saini, A. R. \& Jain, P. C. (1981). J. Chem. Soc. Dalton Trans. pp. 1773-1779.
Bruker (1998). SMART (Version 5.628), SAINT (Version 6.02) and SHELXTL (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.
Chang, S., Jones, L., Wang, C. M., Henling, L. M. \& Gruubbs, R. H. (1998). Organometallics, 17, 3460-3465.
Chaturvedi, K. K. (1977). J. Inorg. Nucl. Chem. 39, 901-903.
Costamagna, J., Vargas, J., Latorre, R., Alvarado, A. \& Mena, G. (1992). Coord. Chem. Rev. 119, 67-88.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany
Yuan, C.-L. (2005a). Acta Cryst. E61, m2112-m2114
Yuan, C.-L. (2005b). Acta Cryst. E61, o1182-o1183.


[^0]:    © 2006 International Union of Crystallography All rights reserved

[^1]:    Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $x,-y+\frac{3}{2}, z+\frac{1}{2}$; (iii) $x, y, z-1$; (iv) $x-1,-y+\frac{3}{2}, z+\frac{1}{2}$.

